学习方法

高考数学(理科)复习:2009年命题预测及名师指导(8)

  • 日期:2012-10-29 10:03
  • 来源: 自学习
  • 浏览:
  • 字体:[ ]

  【试题举例】

  给出下列三个等式:

  f(xy)=f(x)+f(y),f(xy)=f(x)f(y),f(xy)=f(x)+f(y)/1-f(x)f(y).下列函数中不满足其中任何一个等式的是(  )

  A.f(x)=3x  

  B.f(x)=sinx  

  C.f(x)=log2x  

  D.f(x)=tanx

  【答案】B

  【解析】依据指、对数函数的性质可以发现A满足f(xy)=f(x)f(y),

  C满足f(xy)=f(x)+f(y),而D满足f(xy)=f(x)+f(y)/1-f(x)f(y).,

  B不满足其中任何一个等式。

  (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。

  【导读】函数的单调性只能在函数的定义域内来讨论。函数yf(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质。函数的单调性是对某个区间而言的,所以要受到区间的限制。确定函数的单调性或单调区间,在解答题中常用定义法、导数法,在选择题、填空题中还有数形结合法、特殊值法等等。函数的奇偶性是函数既有图象特征又有代数形式,两者均是高考考查的重点,两者相结合的抽象函数的性质探究更是函数性质研究的深入。函数的定义域关于原点对称这是函数具备奇偶性的必要条件。

  【试题举例】

  在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)(  )

  A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数

  B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数

  C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数

  D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数

  【答案】B
 

  【解析】由f(x)=f(2-x)可知f(x)图象关于x=1对称,又因为f(x)为偶函数图象关于x=0对称,可得到f(x)为周期函数且最小正周期为2,结合f(x)在区间[1,2]上是减函数,可得如上f(x)草图。故选B.

  (3)了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。

  【导读】反函数的定义不只局限于函数yax(xR)与函数y=logax(x∈(0,+∞)),对于其他的函数也有可能存在反函数。只有一一对应的函数才有反函数,证明唯一性命题既要证存在性,又要用反证法证其唯一性。遇到互为反函数问题时,要时刻记住两者定义域与值域互换。确定函数三要素、求反函数等课题的综合性,不仅要用到解方程、解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合。从定义域到值域上的一一映射确定的函数才有反函数;反函数的定义域、值域上分别是原函数的值域、定义域,若

关于我们 广告合作 版权声明意见建议 RSS订阅 TAG标签网站地图

COPYRIGHT 2009 - 2019 学霸哥湘ICP备13002298号 链接/广告QQ:287668250

本站部分内容摘自网络,若您的文章不愿被本站摘录,请及时通知我们。