学习方法

高考数学(理科)复习:2009年命题预测及名师指导(20)

  • 日期:2012-10-29 10:03
  • 来源: 自学习
  • 浏览:
  • 字体:[ ]

  (4)了解线性规划的意义,并会简单的应用。

  【导读】线性规划的意义不仅仅是利用于简单的线性关系的求最值问题,命题者将之与解析几何中的点坐标相互交汇而编制出很多精彩的考题. 主要考查线性目标函数在线性约束条件下的最大、最小值问题. 主要以选择题或填空题的形式出现. 解决线性规划应用题的一般步骤:①设出变量,找出线性约束条件和线性目标函数;②准确作图;③求出最优解。

  线性规划问题中的可行域,实际上是二元一次不等式(组)表示的平面区域,是解决线性规划问题的基础,因为在直线AxByC=0同一侧的所有点(xy)实数AxByC的符号相同,所以只需在此直线的某一侧任取一点(x0,y0)〔若原点不在直线上,则取原点(0,0)最简便〕,把它的坐标代入AxByC=0,由其值的符号即可判断二元一次不等式AxByC>0(或<0)表示直线的哪一侧。这是教材介绍的方法。

  在求线性目标函数zaxby的最大值或最小值时,设axbyt,则此直线往右(或左)平移时,t值随之增大(或减小),要会在可行域中确定最优解。

  解线性规划应用题步骤:(1)设出决策变量,找出线性约束条件和线性目标函数;(2)利用图象在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小).

  简单的线性规划在实际生产生活中应用非常广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理安排和规划,能以最少的资源来完成。如常见的任务安排问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决。

  图解法解决线性规划问题时,根据约束条件画出可行域是关键的一步。一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域。第二是画好线性目标函数对应的平行直线系,特别是其斜率与可行域边界直线斜率的大小关系要判断准确。通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不一定是顶点坐标的近似值。它应是目标函数所对应的直线平移进入可行域最先或最后经过的那一整点的坐标。

  【试题举例】

  如果点P在平面区域{2x-y+2≥0,x+y-2≤0,2y-1≥0} 上,点Q在曲线x2+(y+2)2=1上,那么|PQ 的最小值为(  )

  A.3/2  B.4/√5-1  C.2√2-1  D.√2-1

  【答案】A
 

  【解析】点P在平面区域{2x-y+2≥0,x+y-2≤0,2y-1≥0} 上,画出可行域,点Q在曲线x2+(y+2)2=1上,那么|PQ 的最小值为圆上的点到直线y=1/2的距离,即圆心(0,-2)到直线y=1/2的距离减去半径1,得3/2,选A.

Ⅳ.考试形式与试卷结构

  考试采用闭卷、笔试形式。全卷满分为150分,考试时间为120分钟。

  全试卷包括Ⅰ卷和Ⅱ卷.Ⅰ卷为选择题;Ⅱ卷为非选择题。

  试卷一般包括选择题、填空题和解答题等题型。选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程。

  试卷应由容易题、中等难度题和难题组成,总体难度要适当,并以中等难度题为主。

关于我们 广告合作 版权声明意见建议 RSS订阅 TAG标签网站地图

COPYRIGHT 2009 - 2019 学霸哥湘ICP备13002298号 链接/广告QQ:287668250

本站部分内容摘自网络,若您的文章不愿被本站摘录,请及时通知我们。