首页 > 数学 > 数学百科 > 正文

36名军官问题

  • 日期:2009-06-23 09:21
  • 来源: 互联网
  • 浏览:
  • 字体:[ ]
设有6种军衔和来自6个团的36名军官,能不能把他们排成6×6的队列,使得每行每列里都有每种军衔的1名军官和每个团的1名军官呢?这是18世纪瑞士数学家欧拉提出的一个趣味数学问题。
     它在统计学,尤其是在试验设计中有重要的影响。为了易于说明,我们先考虑有3种军衔和来自3个团的9名军官。用 1、2、3分别表示3种军衔,Ⅰ、Ⅱ、Ⅲ表示3个不同的团,这时,相应的问题的解答是:
     上面军衔阵列和团阵列分别是由3个不同符号构成的3行3列的阵列(3×3),其中每个符号在每行与每列恰好只出现一次,我们把这种阵列叫 3阶拉丁方。而并置阵列中32个有序对都是不同的(即并置后,所有可能的9种情况都出现了),称军衔阵列和团阵列是正交拉丁方。那么,36名军官问题就成了:是否存在6阶正交拉丁方呢?欧拉曾猜想,阶数为4k+2(k是正整数)的拉丁方,任何两个同阶的拉丁方都不是正交的。
     容易证明2阶拉丁方不正交。1901年法国数学家Tarry用穷举法证明了不存在6阶正交拉丁方。直到1959年才有3位统计学家终于证明了,除了2阶和6阶外,其他情况都有解。欧拉的猜想中,除这两种情况外,其余都猜错了。

    关于我们 广告合作 版权声明意见建议 RSS订阅 TAG标签网站地图

    COPYRIGHT 2009 - 2019 学霸哥湘ICP备13002298号 链接/广告QQ:287668250

    本站部分内容摘自网络,若您的文章不愿被本站摘录,请及时通知我们。