夜间, 一个水手醒来, 决定拿走属于他的那份椰子而不想等到早上.他把椰子分为相等的三堆, 但发现多出了一个椰子, 于是把这个多出的给了他们的猴子.接着他藏好了自己那份椰子又去睡觉了.不久, 另一个水手也醒来, 他做了与第一个水手同样的事, 也把此时正好多出来的一个椰子给了猴子.而最后第三个水手醒来, 他也跟前两个水手一样做法分了椰子, 并把此时多出的一个给了猴子.早晨, 当三名水手起来时, 他们决定为猴子留下一个椰子后把其余的椰子平分为三堆.
试问, 水手们收集到的椰子最少的数目是多少?
试将同样的问题推广到四个和五个水手.
用于解这个问题的方程称为丢番图方程.希腊数学家丢番图最早把这种类型的方程用于解特定类型的问题.
(见附录`猴子与椰子'的解答)
教育新鲜事