《比的应用》教材分析与教学建议
这部分内容实际上就是“按比例分配”的内容,但教材中没有给出这个名称,目的有两个。第一,由于按比例分配问题有一定的解题方法,教材担心引入这个名称后,在教学时又把这一问题归成一个类型,会很快引入解这个类型问题的方法,学生也会把解决问题变成套用方法。而学生通过对比的意义的理解,完全可以自己探索出解决问题的方法。所以,教材鼓励学生根据比的意义解决这一问题。第二,如果引入“按比例分配”的名称,学生可能会询问什么是比例,于是又要引入比例的概念。这样一来,在学生刚刚接触比的学习,就引入了比、比例、比值等概念,将会使学生将大量精力放在区分这几个概念上,而忽略了对比的意义的理解。因此,教材没有引入“按比例分配”的名称,而把这节课定位于比的应用。
教材创设了一个给两个班的小朋友分橘子的情境,首先引入一个讨论,怎么分合理,使学生体会到按大班和小班的人数的比去分比较合理。
(1)教材鼓励学生实际动手分配,由于并没有给出具体的橘子数,所以学生只能进行实际操作。
教学时,教师一定要给学生一定的实物(可以用小棒等代替橘子),鼓励他们进行实际分配,并记录下分配的过程。实际操作的好处还在于,在操作过程中学生将进一步体会比的意义(大班和小班的人数的比是什么意思)。观察记录的过程中,学生将发现6∶4,30∶20……都等于3∶2,这不仅可以巩固比的化简的内容,还使学生体会到大班分到的橘子数扩大为原来的几倍,小班分到的橘子数也要扩大为原来的几倍,这实际上为今后学习正比例积累了经验。另外,在实际操作中,学生将根据筐里剩下的橘子数,不断调整一次分配的数量,这实际上发展了学生的数感。同时,在分的过程中,学生将体会到大班占了3份,小班占了2份,这为下面寻找解决问题的策略奠定了基础。
教学时,这个过程要给学生提供充分的体验时间,关注学生不同的表现。除了教材提供的分法,也可能出现其他的分法,这是学生学习新知识的生长点,也是他们面对一个新的数学问题最自然最真实的感受,所以要让学生说一说自己的分法,互相交流分一分的经验,教师进行及时的点评总结。
(2)有了实际操作的经验,在解决把140个橘子按3∶2分给两个班时,学生可能出现多种解决问题的策略,教师应给予学生充分的探索策略并进行交流的空间。教材提供了几个解决问题的策略:第一种是实际操作,对于学习比较困难的学生应鼓励他们进行操作,在操作中启发他们的思路;第二种是画图,在上面分的过程中,学生建立了表象,把大班画成3份,小班画成2份,以此启发学生思考一共是5份,可以先求出1份,再求出大班和小班分得的橘子数;第三种也是先想到了5份,然后根据分数的意义求出结果。
教学时,在学生探索出不同的解决问题的策略后,教师应组织他们将不同的策略进行比较,发现其中的共同点。此时,教师不应急于引导学生用第三种策略,而是鼓励学生在比较的基础上选择自己认为合理的策略。
最后,教师可以引导学生回顾平均分,使学生认识到平均分实际上就是按照1∶1的比进行分配。
试一试
答案:巧克力0.4千克,奶1.8千克
练一练
第1题
答案:鲢鱼10000尾,鲤鱼15000尾
第2题
答案:450千克
第3题
答案:(1)面包:鸡蛋:牛奶=2∶1∶4(2)面包120克,鸡蛋60克,牛奶240克
数学故事
阿凡提分马的故事,可能有的学生以前听过,可以让学生自己把故事讲出来。教学时,教师可以引导学生算出三个人分得的马:老大6匹,老二3匹,老三2匹。教师还可以进一步引导学生认识到12+14+16并不等于1。
背景材料
黄金分割最早见于古希腊和古埃及。黄金分割又称黄金率、中外比,即在一条线段上取一点,使线段分为长短不等的a,b两段,并且使a∶(a+b)=b∶a。其中,a∶(a+b的比值为0.6180339……这种比例在造型上比较悦目,因此,0.618又被称为黄金分割率。黄金分割被广泛地应用于建筑、设计、绘画等各方面。代表雅典古城的巴台农(parthnon神庙,在公元前447年就已经确立了它的地位,并且屹立至今,成为西方建筑的代表,其在设计上就利用了黄金分割比。巴台农神庙是用坚硬的大理石建成,但是经过设计师的巧妙构思,整座建筑一点都不让人觉得沉重。工程品质即使以今天的标准来看,仍属一流。譬如:神庙所有的巨大石柱都是向内倾斜,而非互相平行。如果它们都平行,会让人产生它们都向外弯的错觉;所以设计师以一英里的高度作为交会点,每根石柱都向内微倾,使得神庙更为稳重而巩固。古代的建筑师又研究出来,大型建筑的地基如果完全水平,也会使人产生扭曲的感觉,因此神庙的地基是中间最高,沿着和缓的曲线向四周低伸。庙基的石砖重达数吨,却间不容发;巨大的廊柱吸引所有人的目光,不管在哪一个角度眺望,巴台农神庙都和周围的景致和谐共存。
教材创设了一个给两个班的小朋友分橘子的情境,首先引入一个讨论,怎么分合理,使学生体会到按大班和小班的人数的比去分比较合理。
(1)教材鼓励学生实际动手分配,由于并没有给出具体的橘子数,所以学生只能进行实际操作。
教学时,教师一定要给学生一定的实物(可以用小棒等代替橘子),鼓励他们进行实际分配,并记录下分配的过程。实际操作的好处还在于,在操作过程中学生将进一步体会比的意义(大班和小班的人数的比是什么意思)。观察记录的过程中,学生将发现6∶4,30∶20……都等于3∶2,这不仅可以巩固比的化简的内容,还使学生体会到大班分到的橘子数扩大为原来的几倍,小班分到的橘子数也要扩大为原来的几倍,这实际上为今后学习正比例积累了经验。另外,在实际操作中,学生将根据筐里剩下的橘子数,不断调整一次分配的数量,这实际上发展了学生的数感。同时,在分的过程中,学生将体会到大班占了3份,小班占了2份,这为下面寻找解决问题的策略奠定了基础。
教学时,这个过程要给学生提供充分的体验时间,关注学生不同的表现。除了教材提供的分法,也可能出现其他的分法,这是学生学习新知识的生长点,也是他们面对一个新的数学问题最自然最真实的感受,所以要让学生说一说自己的分法,互相交流分一分的经验,教师进行及时的点评总结。
(2)有了实际操作的经验,在解决把140个橘子按3∶2分给两个班时,学生可能出现多种解决问题的策略,教师应给予学生充分的探索策略并进行交流的空间。教材提供了几个解决问题的策略:第一种是实际操作,对于学习比较困难的学生应鼓励他们进行操作,在操作中启发他们的思路;第二种是画图,在上面分的过程中,学生建立了表象,把大班画成3份,小班画成2份,以此启发学生思考一共是5份,可以先求出1份,再求出大班和小班分得的橘子数;第三种也是先想到了5份,然后根据分数的意义求出结果。
教学时,在学生探索出不同的解决问题的策略后,教师应组织他们将不同的策略进行比较,发现其中的共同点。此时,教师不应急于引导学生用第三种策略,而是鼓励学生在比较的基础上选择自己认为合理的策略。
最后,教师可以引导学生回顾平均分,使学生认识到平均分实际上就是按照1∶1的比进行分配。
试一试
答案:巧克力0.4千克,奶1.8千克
练一练
第1题
答案:鲢鱼10000尾,鲤鱼15000尾
第2题
答案:450千克
第3题
答案:(1)面包:鸡蛋:牛奶=2∶1∶4(2)面包120克,鸡蛋60克,牛奶240克
数学故事
阿凡提分马的故事,可能有的学生以前听过,可以让学生自己把故事讲出来。教学时,教师可以引导学生算出三个人分得的马:老大6匹,老二3匹,老三2匹。教师还可以进一步引导学生认识到12+14+16并不等于1。
背景材料
黄金分割最早见于古希腊和古埃及。黄金分割又称黄金率、中外比,即在一条线段上取一点,使线段分为长短不等的a,b两段,并且使a∶(a+b)=b∶a。其中,a∶(a+b的比值为0.6180339……这种比例在造型上比较悦目,因此,0.618又被称为黄金分割率。黄金分割被广泛地应用于建筑、设计、绘画等各方面。代表雅典古城的巴台农(parthnon神庙,在公元前447年就已经确立了它的地位,并且屹立至今,成为西方建筑的代表,其在设计上就利用了黄金分割比。巴台农神庙是用坚硬的大理石建成,但是经过设计师的巧妙构思,整座建筑一点都不让人觉得沉重。工程品质即使以今天的标准来看,仍属一流。譬如:神庙所有的巨大石柱都是向内倾斜,而非互相平行。如果它们都平行,会让人产生它们都向外弯的错觉;所以设计师以一英里的高度作为交会点,每根石柱都向内微倾,使得神庙更为稳重而巩固。古代的建筑师又研究出来,大型建筑的地基如果完全水平,也会使人产生扭曲的感觉,因此神庙的地基是中间最高,沿着和缓的曲线向四周低伸。庙基的石砖重达数吨,却间不容发;巨大的廊柱吸引所有人的目光,不管在哪一个角度眺望,巴台农神庙都和周围的景致和谐共存。
《比的应用》教材分析与教学建议一文由优秀教案免费提供,本站为公益性网站,此教案为网上收集或网友提供,版权归原作者所有,如果侵犯了您的权益,请及时与我们联系,我们会立即删除!
和《比的应用》教材分析与教学建议相关的教案:
- 分数除法应用题教学反思2015-06-19
- 《复式折线统计图》教学设计及反思—2015-06-19
- 《体积单位间的进率》教学反思2015-06-19
- 第五单元 百分数 教学计划2015-06-12
- 课程标准实验教材六年级(上册)第六2015-06-09
- “圆柱的表面积”教学片断2015-06-09
- 一个数乘分数教学设计2015-06-09
- 圆柱的表面积教学设计及反思2015-06-09
- 《圆柱的表面积》教学设计2015-06-08
- 《打折问题》教学设计2015-06-08
- 圆柱的认识教学案例2015-06-08
- 《圆柱表面积练习》教学设计2015-06-08
- 第二单元 圆柱与圆锥教学设计 第3课2015-06-06
- 《圆锥的体积》教学设计2015-06-06
- 圆锥的体积教学设计及教后反思2015-06-06
- 小学六年级数学上学期教学计划(人教2015-06-06
- 圆锥的体积教学案例与反思2015-06-06
- 《圆柱的体积》教学设计与反思2015-06-05
- 圆柱的认识教学设计2015-06-05
- 圆柱体积教学案例及反思2015-06-05
- 圆柱表面积教学案例2015-06-05
- “整数乘法运算定律推广到分数乘法”2015-06-04
- 第二单元 圆柱与圆锥教学设计 第6课2015-06-04
- 《圆柱表面积》教学设计2015-06-04
- 上一篇:列方程解决实际问题(共9题)
- 下一篇:比的意义、性质以及比的应用练习