学习方法

小学数学必考题型及口诀汇总,一遍就能记住!

  • 日期:2017-09-27 09:51
  • 来源: 小学生学习
  • 浏览:
  • 字体:[ ]

 

 

 

 

1
正方体展开图


正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:


1
141型
中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。

2
231型
中间一行3个作侧面,共3种基本图形。

3
222型
中间两个面,只有1种基本图形。

4
33型
中间没有面,两行只能有一个正方形相连,只有1种基本图形。

2
和差问题
已知两数的和与差,求这两个数。

【口诀】:
  和加上差,越加越大;
  除以2,便是大的;
  和减去差,越减越小;
  除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。


按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。


3
鸡兔同笼问题


【口诀】:

  假设全是鸡,假设全是兔。
  多了几只脚,少了几只足?
  除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。


求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24

求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12

4
浓度问题


(1)加水稀释


【口诀】:

  加水先求糖,糖完求糖水。
  糖水减糖水,便是加水量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?


加水先求糖,原来含糖为:20X15%=3(千克)

糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)

糖水减糖水,后的糖水量减去原来的糖水量,

30-20=10(千克)


(2)加糖浓化


【口诀】:

  加糖先求水,水完求糖水。
  糖水减糖水,求出便解题

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?


加糖先求水,原来含水为:20X(1-15%)=17(千克)

水完求糖水,含17千克水在20%浓度下应有多少糖水,

17/(1-20%)=21.25(千克)

糖水减糖水,后的糖水量减去原来的糖水量,

21.25-20=1.25(千克)


5
路程问题


(1)相遇问题


【口诀】:

  相遇那一刻,路程全走过。
  除以速度和,就把时间得。

例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?


相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)

(2)追及问题


【口诀】:

  慢鸟要先飞,快的随后追。
  先走的路程,除以速度差,
  时间就求对。

例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?


先走的路程,为3X2=6(千米)

速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6/3=2(小时)。

6
和比问题
已知整体求部分。

【口诀】:
  家要众人合,分家有原则。
  分母比数和,分子自己的。
  和乘以比例,就是该得的。

例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。


分母比数和,即分母为:2+3+4=9;

分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。

7
差比问题(差倍问题)


【口诀】:

  我的比你多,倍数是因果。
  分子实际差,分母倍数差。
  商是一倍的,
  乘以各自的倍数,
  两数便可求得。

例:甲数比乙数大12,甲:乙=7:4,求两数。


先求一倍的量,12/(7-4)=4,

所以甲数为:4X7=28,乙数为:4X4=16。

8
工程问题


【口诀】:

  工程总量设为1,
  1除以时间就是工作效率。
  单独做时工作效率是自己的,
  一齐做时工作效率是众人的效率和。
  1减去已经做的便是没有做的,
  没有做的除以工作效率就是结果。

例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?


[1-(1/6+1/4)X2]/(1/6)=1(天)


9
植树问题


【口诀】:

  植树多少棵,
  要问路如何?
  直的加上1,
  圆的是结果。

例1:在一条长为120米的马路上植树,间距为4米,植树多少棵?


路是直的。所以植树120/4+1=31(棵)。


例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少棵?


路是圆的,所以植树120/4=30(棵)。


10
盈亏问题


【口诀】:

  全盈全亏,大的减去小的;
  一盈一亏,盈亏加在一起。
  除以分配的差,
  结果就是分配的东西或者是人。

例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?


一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)


例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?


全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。


例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?


全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)


11
牛吃草问题


【口诀】:

  每牛每天的吃草量假设是份数1,
  A头B天的吃草量算出是几?
  M头N天的吃草量又是几?
  大的减去小的,除以二者对应的天数的差值,
  结果就是草的生长速率。
  原有的草量依此反推。
  公式就是A头B天的吃草量减去B天乘以草的生长速率。
  将未知吃草量的牛分为两个部分:
  一小部分先吃新草,个数就是草的比率;
  有的草量除以剩余的牛数就将需要的天数求知。

例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。


每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;

大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;
剩下的21-15=6去吃原有的草,
所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)

12
年龄问题
【口诀】:
  岁差不会变,同时相加减。
  岁数一改变,倍数也改变。
  抓住这三点,一切都简单。

例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?


岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。

已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。


例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?


岁差不会变,今年的岁数差13-9=4几年后也不会改变。

几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。

13
余数问题


【口诀】:

  余数有(N-1)个,
  最小的是1,最大的是(N-1)。
  周期性变化时,
  不要看商,
  只要看余。

例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?
分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是18-2=16(点)。

    关于我们 广告合作 版权声明意见建议 RSS订阅 TAG标签网站地图

    COPYRIGHT 2009 - 2019 学霸哥湘ICP备13002298号 链接/广告QQ:287668250

    本站部分内容摘自网络,若您的文章不愿被本站摘录,请及时通知我们。