一道容易混淆的函数题
学生对函数的定义,性质,图象之间的联系往往不能正确的理解,熟练的运用,以致出现错误,造成学习上的困难。例如:
已知一次函数y=(2m+4)x+(3-n),求:
问题(1):m,n是何值时,y随x的增大而增大?
分析:条件(1)是考察一次函数的性质,当y=kx+b中,k>0时,y随x的增大而增大,所以应该找出y=(2m+4)x+3-n中的k=2m+4当2m+4>0时即m>-2时,y随x的增大而增大,与y=kx+b中的b没有关系,即与3-n没有关系。
问题(2)m, n是何值时,函数图象与y轴的交点在x轴的下方。
分析:一次函数与y轴的交点,应令x=0时,求出y的值为3-n,得交点坐标(0,3-n),当交点位于x轴的下方,即3-n<0时,得n<3。但学生容易忽略2m+4≠0这个条件,只有当m≠-2,n>3时,函数图象与y轴的交点在x轴的下方。
问题(3)m、n是什么数时?函数的图象经过原点。
分析:学生在分析此题时,很快得出y=(2m+4)x+3-n过(0,0)得:0=(2m+1)×0+3-n,得n=3,忽略了一次项系数2m+4≠0这个条件,得m≠-2,所以,当m≠-2,n=3时,图像过原点。
问题(4)若m=-1,n=2时,求此一次函数的图像与两个坐标轴的交点坐标。
分析:将m,n的值代入一次函数y=(2m+4)x+3-n,得y=2x+1,然后,考虑x轴,y轴上的点的坐标特点,即x轴上的点的纵坐标y=0,即0=2x+1,得x=-1/2,所以一次函数与y轴的交点为(1/2,0),y轴上的点的横坐标x=0,得y=2×0+1=1,得一次函数与y轴的交点为(0,1)。
问题5:若图象经过一、二、三象限,求m,n的取值范围。
分析:本题学生易摸不着头脑,不知道应对哪些条件进行讨论,所以应引导学生将大致图象在坐标轴中画出来,然后分析得出2m+4>0,3-n>0,得m>-2,n<3时,图象过一、二、三象限。
初学者在分析思路,应用知识解题时,往往抓不住关键,基础差的学生根本不知道从何处入手,需要教师适时的加以引导,方可度过难关。
已知一次函数y=(2m+4)x+(3-n),求:
问题(1):m,n是何值时,y随x的增大而增大?
分析:条件(1)是考察一次函数的性质,当y=kx+b中,k>0时,y随x的增大而增大,所以应该找出y=(2m+4)x+3-n中的k=2m+4当2m+4>0时即m>-2时,y随x的增大而增大,与y=kx+b中的b没有关系,即与3-n没有关系。
问题(2)m, n是何值时,函数图象与y轴的交点在x轴的下方。
分析:一次函数与y轴的交点,应令x=0时,求出y的值为3-n,得交点坐标(0,3-n),当交点位于x轴的下方,即3-n<0时,得n<3。但学生容易忽略2m+4≠0这个条件,只有当m≠-2,n>3时,函数图象与y轴的交点在x轴的下方。
问题(3)m、n是什么数时?函数的图象经过原点。
分析:学生在分析此题时,很快得出y=(2m+4)x+3-n过(0,0)得:0=(2m+1)×0+3-n,得n=3,忽略了一次项系数2m+4≠0这个条件,得m≠-2,所以,当m≠-2,n=3时,图像过原点。
问题(4)若m=-1,n=2时,求此一次函数的图像与两个坐标轴的交点坐标。
分析:将m,n的值代入一次函数y=(2m+4)x+3-n,得y=2x+1,然后,考虑x轴,y轴上的点的坐标特点,即x轴上的点的纵坐标y=0,即0=2x+1,得x=-1/2,所以一次函数与y轴的交点为(1/2,0),y轴上的点的横坐标x=0,得y=2×0+1=1,得一次函数与y轴的交点为(0,1)。
问题5:若图象经过一、二、三象限,求m,n的取值范围。
分析:本题学生易摸不着头脑,不知道应对哪些条件进行讨论,所以应引导学生将大致图象在坐标轴中画出来,然后分析得出2m+4>0,3-n>0,得m>-2,n<3时,图象过一、二、三象限。
初学者在分析思路,应用知识解题时,往往抓不住关键,基础差的学生根本不知道从何处入手,需要教师适时的加以引导,方可度过难关。
一道容易混淆的函数题一文由优秀教案免费提供,本站为公益性网站,此教案为网上收集或网友提供,版权归原作者所有,如果侵犯了您的权益,请及时与我们联系,我们会立即删除!
和一道容易混淆的函数题相关的教案:
- 一次函数(第一课时)教学设计及反思2015-03-22
- 《一次函数教学反思2015-03-17
- 一次函数图像教学反思2015-03-16
- 《锐角三角函数》教学反思2015-03-14
- 一次函数的应用教学反思2015-03-10
- 《指数函数》(第一课时)教学反思2015-02-02
- 《反函数》教学反思2014-12-29
- 《用消元法求函数解析式》教学反思2014-12-18
- 反比例函数复习教学反思2014-10-31
- 《三角函数》教学反思2014-10-31
- 《二次函数》学反思2014-10-20
- 《函数》教学反思2014-07-11
- 函数教学反思2014-06-27
- 一次函数复习课后反思2014-03-29
- 二次函数复习课案例及反思2013-06-09
- 《对数函数》教学反思2013-01-04
- 《一次函数与一元二次方程(组)》教2012-11-03
- 反比例函数图像的性质的教学设计与反2012-11-01
- 函数教学中应用信息技术的一点体会2012-11-01
- 《一次函数》教后感2012-10-31
- 《一次函数与一元一次方程》教后感2012-10-31
- 信息技术与函数教学2012-10-31
- 《二次函数应用》的复习反思2012-07-23
- 二次函数复习课(一)教学反思2012-05-20
- 上一篇:残缺的美----《用尺规作线段》教学反思
- 下一篇:新课标下数学作业设计之我见