> 幼教教案:
幼教语文教案 幼教数学教案 幼教英语教案 幼教常识教案 幼教音乐教案 幼教体育教案 幼教美术教案 幼儿园教案 小班教案 中班教案 大班教案
> 小学教案:
小学语文教案 小学数学教案 小学英语教案 小学自然教案 小学音乐教案 小学体育教案 小学美术教案 小学信息技术 小学说课稿 小学主题班会
> 初中教案:
初中语文教案 初中数学教案 初中英语教案 初中物理教案 初中化学教案 初中历史教案 初中地理教案 初中生物教案 初中政治教案 初中美术教案
> 高中教案:
高中语文教案 高中数学教案 高中英语教案 高中物理教案 高中化学教案 高中历史教案 高中地理教案 高中生物教案 高中政治教案 高中美术教案
> 其他教案:
评课稿 说课稿 教学反思 教学设计 课堂实录 学生评语 班级管理 班任挚友 教学参考 教学相关 国旗下讲话 信息技术教案 主题班会教案

因式分解的应用

时间:2013-01-09 12:48来源:好好学习点击:字体:[ ]

因式分解的简单应用一、       教学目标 1、  会运用因式分解进行简单的多项式除法。2、  会运用因式分解解简单的方程。二、       教学重点与难点教学重点:因式分解在多项式除法和解方程两方面的应用。    教学难点 :应用因式分解解方程涉及较多的推理过程。      三、       教学过程 (一)  引入新课1、  知识回顾(1)       因式分解的几种方法:  ①提取公因式法: ma+mb=m(a+b)                             ②应用平方差公式: –  =(a+b) (a-b)③应用完全平方公式:a ±2ab+b =(a±b)  (2)       课前热身:           ①分解因式: (x +4) y - 16x y(二) 师生互动,讲授新课1、运用因式分解进行多项式除法例1   计算: (1)  (2ab -8a b) ÷(4a-b)(2)(4x -9) ÷(3-2x)解:(1) (2ab -8a b)÷(4a-b)                =-2ab(4a-b) ÷(4a-b)        =-2ab (2)   (4x -9) ÷(3-2x)           =(2x+3)(2x-3) ÷[-(2x-3)]           =-(2x+3)           =-2x-3   一个小问题 : 这里的x能等于3/2吗 ?为什么? 想一想:那么(4x -9) ÷(3-2x) 呢?练习:课本P162——课内练习 12、  合作学习想一想:如果已知 (     )×(     )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若A×B=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0试一试:你能运用上面的结论解方程(2x+1)(3x-2)=0 吗?3、  运用因式分解解简单的方程例2 解下列方程:     (1)  2x +x=0           (2)  (2x-1) =(x+2) 解:x(x+1)=0                             解:(2x-1) -(x+2) =0则x=0,或2x+1=0                            (3x+1)(x-3)=0∴原方程的根是x1=0,x2=                则3x+1=0,或x-3=0                                        ∴原方程的根是x1=  ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2 等练习:课本P162——课内练习2做一做!对于方程:x+2=(x+2)  ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么? 教师总结:运用因式分解解方程的基本步骤 (1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程; (2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) -16x =0解:将原方程左边分解因式,得      (x +4) -(4x) =0(x +4+4x)(x +4-4x)=0(x +4x+4)(x -4x+4)=0 (x+2) (x-2) =0接着继续解方程,5、  练一练 ①已知 a、b、c为三角形的三边,试判断 a  -2ab+b -c 大于零?小于零?等于零?解:     a -2ab+b -c              =(a-b) -c  =(a-b+c)(a-b-c)∵ a、b、c为三角形的三边∴ a+c ﹥b    a﹤b+c∴ a-b+c﹥0    a-b-c ﹤0即:(a-b+c)(a-b-c) ﹤0   ,因此 a -2ab+b -c 小于零。6、  挑战极限①已知:x=2004,求∣4x  -4x+3 ∣ -4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x  - 4x+3=(4x  -4x+1)+2 =(2x-1) +2 >0x  +2x+2 =(x  +2x+1)+1 =(x+1)  +1>0∴ ∣4x  -4x+3 ∣ -4 ∣ x  +2x+2 ∣ +13x+6=4x  - 4x+3 -4(x  +2x+2 ) +13x+6=4x  - 4x+3 -4x  -8x -8+13x+6=x+1即:原式=x+1=2004+1=2005 (三)梳理知识,总结收获因式分解的两种应用:(1)运用因式分解进行多项式除法(2)运用因式分解解简单的方程 (四)布置课后作业 1、作业 本6.42、课本P163作业 题(选做)四、       教学反思 

    因式分解的应用一文由优秀教案免费提供,本站为公益性网站,此教案为网上收集或网友提供,版权归原作者所有,如果侵犯了您的权益,请及时与我们联系,我们会立即删除!