对渗透数学思想方法教学的思考
数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是“无形”的,教师讲不讲,还是讲多讲少,随意性很大。有的教师常常因教学时间紧,将它做为可有可无的事情挤掉,对学生的要求则是能领会多少就领会多少。因此,教师首先要树立观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学思想方法纳入到教学目标中去;其次要深入钻研教材,努力挖掘教材中可以渗透数学思想方法的各种因素;最后,教师应该对小学数学教学中的思想方法有一个总体的设计,提出不同阶段的具体要求。下面是我对如何渗透数学思想方法教学的一些思考。
一、指导操作,及时归纳。
归纳是通过对某类事物中的若干属性分析得出一般结论的思想方法。依据操作的内容,指导学生有步骤的合理操作,建立知识的表象,初步形成感性认识之后,不失时机地进行归纳,可以使学生对操作所获取的感性认识上升到理性认识。例如百以内数的加法法则的归纳,可以先借助实物图,讨论不进位加法的实例,如讨论45+23用竖式如何计算,从而归纳出“相同数位对齐”和“从个位加起”;然后借助实物图,讨论进位加法的实例,如讨论37+25用竖式如何计算,从而归纳出“个位满十,向十位进一”。以上两次归纳都是根据个别实例,得出一般性结论,都是不完全归纳;最后,综合进位加法和不进位加法的结论,完全归纳出适合于百以内数的一切加法竖式的笔算法则。
二、仔细观察,大胆猜想。
猜想是对研究的对象或问题进行观察、实验、分析、比较、类比等,依据已有的材料作符合一定经验与事实的推测性想象的思维方法。教学中根据研究的问题,给学生提供具有启发性的材料,让学生仔细观察,并大胆猜想,所研究的问题会出现什么样的情况,然后,验证自己的猜想是否正确,从而进一步弄清问题的实质。例如:教学《圆的周长》,教师提出,正方形的周长与它的边长有关,那么,圆的周长与什么有关系呢?同时用细绳拴住一个小球,拿在手上甩(转)出大小不同的几个圆,让学生观察,启发他们猜想,学生不难猜想到圆的周长与它的直径或半径有关系。进而追问到底有没有关系?有什么样的关系呢?激发了学生的求知欲,为后面教学创设了一个很好的情景。
三、利用迁移,促成转化。
转化思想是借用事物运动、变化及事物之间相互联系的观点,把未知变为已知,把难变为易,把复杂变为简单,把陌生转化为熟悉的观点。转化思想是研究和解决数学问题的有效思考方法,能促进学生知识与智慧同时增长。例如圆面积的推倒过程就是运用化“曲”为“直”的转化方法,将圆分割成若干等份,将它拼成近似的长方形,由拼成的长方形的长、宽、高与圆的半径、周长的关系以及长方形面积公式为基础,得出圆的面积计算公式S=πr²。这就将圆转化成长方形来解决面积计算问题。
四、适时比较,揭示规律。
一、指导操作,及时归纳。
归纳是通过对某类事物中的若干属性分析得出一般结论的思想方法。依据操作的内容,指导学生有步骤的合理操作,建立知识的表象,初步形成感性认识之后,不失时机地进行归纳,可以使学生对操作所获取的感性认识上升到理性认识。例如百以内数的加法法则的归纳,可以先借助实物图,讨论不进位加法的实例,如讨论45+23用竖式如何计算,从而归纳出“相同数位对齐”和“从个位加起”;然后借助实物图,讨论进位加法的实例,如讨论37+25用竖式如何计算,从而归纳出“个位满十,向十位进一”。以上两次归纳都是根据个别实例,得出一般性结论,都是不完全归纳;最后,综合进位加法和不进位加法的结论,完全归纳出适合于百以内数的一切加法竖式的笔算法则。
二、仔细观察,大胆猜想。
猜想是对研究的对象或问题进行观察、实验、分析、比较、类比等,依据已有的材料作符合一定经验与事实的推测性想象的思维方法。教学中根据研究的问题,给学生提供具有启发性的材料,让学生仔细观察,并大胆猜想,所研究的问题会出现什么样的情况,然后,验证自己的猜想是否正确,从而进一步弄清问题的实质。例如:教学《圆的周长》,教师提出,正方形的周长与它的边长有关,那么,圆的周长与什么有关系呢?同时用细绳拴住一个小球,拿在手上甩(转)出大小不同的几个圆,让学生观察,启发他们猜想,学生不难猜想到圆的周长与它的直径或半径有关系。进而追问到底有没有关系?有什么样的关系呢?激发了学生的求知欲,为后面教学创设了一个很好的情景。
三、利用迁移,促成转化。
转化思想是借用事物运动、变化及事物之间相互联系的观点,把未知变为已知,把难变为易,把复杂变为简单,把陌生转化为熟悉的观点。转化思想是研究和解决数学问题的有效思考方法,能促进学生知识与智慧同时增长。例如圆面积的推倒过程就是运用化“曲”为“直”的转化方法,将圆分割成若干等份,将它拼成近似的长方形,由拼成的长方形的长、宽、高与圆的半径、周长的关系以及长方形面积公式为基础,得出圆的面积计算公式S=πr²。这就将圆转化成长方形来解决面积计算问题。
四、适时比较,揭示规律。
对渗透数学思想方法教学的思考一文由优秀教案免费提供,本站为公益性网站,此教案为网上收集或网友提供,版权归原作者所有,如果侵犯了您的权益,请及时与我们联系,我们会立即删除!
和对渗透数学思想方法教学的思考相关的教案:
- 对于学生数学成绩评定的几点思考2015-04-28
- 对算法多样化的思考2015-04-24
- 数学教学中进行德育渗透的点滴尝试2015-04-06
- 数学课堂教学追“新”现象冷思考2015-03-24
- 《9加几》教学案例设计及我对算法多2015-03-22
- 对“平行四边形是轴对称图形”的思考2015-03-22
- 对数学实践活动的几点思考2015-03-21
- 在不断的自我否定中实现超越——关于2015-03-20
- 对当前“合作学习”的几点思考2015-03-03
- 找桃子的思考——《什么样的课是一堂2015-02-28
- 一年级数学课堂教学中小组合作学习的2015-02-27
- 重视知识形成过程渗透数学思想方法2015-02-02
- 要给学生思考的时间2014-12-24
- 课程开发的一些思考2014-12-22
- 注重数学思想方法的概括,提高思维的2014-12-03
- 充分认识数学思想方法是数学的灵魂2014-11-26
- 解数学题后的再思考2014-11-24
- 培养学生善于思考的习惯2014-11-19
- 关于数学课上师生间沟通、交流与合作2014-11-19
- 自然教学中的数学渗透2014-11-06
- 数学思想方法教育的理解2014-10-27
- 一道开放题引起的思考2014-10-23
- “不容置疑”生疑后的思考2014-10-18
- 教师思考集:情境创设为哪般?2014-10-14
- 上一篇:《 认识物体》的教学评析
- 下一篇:揭趣、引活、巧练