> 幼教教案:
幼教语文教案 幼教数学教案 幼教英语教案 幼教常识教案 幼教音乐教案 幼教体育教案 幼教美术教案 幼儿园教案 小班教案 中班教案 大班教案
> 小学教案:
小学语文教案 小学数学教案 小学英语教案 小学自然教案 小学音乐教案 小学体育教案 小学美术教案 小学信息技术 小学说课稿 小学主题班会
> 初中教案:
初中语文教案 初中数学教案 初中英语教案 初中物理教案 初中化学教案 初中历史教案 初中地理教案 初中生物教案 初中政治教案 初中美术教案
> 高中教案:
高中语文教案 高中数学教案 高中英语教案 高中物理教案 高中化学教案 高中历史教案 高中地理教案 高中生物教案 高中政治教案 高中美术教案
> 其他教案:
评课稿 说课稿 教学反思 教学设计 课堂实录 学生评语 班级管理 班任挚友 教学参考 教学相关 国旗下讲话 信息技术教案 主题班会教案

轴对称和轴对称图形

时间:2012-12-08 09:28来源:自学习点击:字体:[ ]

1、知识目标:

(1)使学生理解轴对称的概念;

(2)了解轴对称的性质及其应用;

(3)知道轴对称图形与轴对称的区别.

2、能力目标:

(1)通过的学习,提高学生的观察辨析图形的能力和画图能力;

(2)通过实际问题的练习,提高学生解决实际问题的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过轴对称图形的学习,体现数学中的美,感受数学中的美.

教学重点:的概念,轴对称的性质及判定

教学难点:区分的概念

教学用具:直尺,微机

教学方法:观察实验

教学过程

1、概念:(阅读教材,回答问题)

(1)对称轴

(2)轴对称

(3)轴对称图形

学生动手实验,说明上述概念.最后总结轴对称及轴对称图形这两个概念的区别:

轴对称涉及两个图形,是两个图形的位置关系.轴对称图形只是针对一个图形而言.

都有对称轴,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线对称.

2、定理的获得

(投影):观察轴对称的两个图形是否为全等形

定理1:关于某条直线对称的两个图形是全等形

由此得出:

定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线.

启发学生,写出此定理的逆命题,并判断是否为真命题?由此得到:

逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.

学生继续观察得到

定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.

说明:上述定理2可以看成是轴对称图形的性质定理,逆定理则是判定定理.

上述问题的获得,都是由定理1引发、变换、延伸得到的.教师应充分抓住这次机会,培养学生变式问题的研究.

2、常见的轴对称图形

图形

对称轴

点A

过点A的任意直线

直线m

直线m,m的垂线

线段AB

直线AB,线段AB的中垂线

角平分线所在的直线

等腰三角形

底边上的中线

3、应用

例1 如图,已知:△ABC,直线MN,求作△A1B1C1,使△A1B1C1与△ABC关于MN对称.

分析:按照轴对称的概念,只要分别过A、B、C向直线MN作垂线,并将垂线段延长一倍即可得到点A、B、C关于直线MN的对称点,连结所得到的这三个点.

作法:(1)作AD⊥MN于D,延长AD至A1使A1D=AD,

得点A的对称点A1

(2)同法作点B、C关于MN的对称点B1、、C1

(3)顺次连结A1、B1、C1

∴△A1B1C1即为所求


例2 如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,

且AC=BD,若A到河岸CD的中点的距离为500cm.问:

(1)牧童从A处牧牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?

(2)最短路程是多少?

解:问题可转化为已知直线CD和CD同侧两点A、B,

在CD上作一点M,使AM+BM最小,

先作点A关于CD的对称点A1,

再连结A1B,交CD于点M,

则点M为所求的点.

证明:(1)在CD上任取一点M1,连结A1 M1、A M1

B M1、AM

∵直线CD是A、A1的对称轴,M、M1在CD上

∴AM=A1M,AM1=A1M1

∴AM+BM=AM1+BM=A1B

在△A1 M1B中

∵A1 M1+BM1>AM+BN即AM+BM最小

(2)由(1)可得AM=AM1,A1C=AC=BD

∴△A1CM≌△BDM

∴A1M=BM,CM=DM

即M为CD中点,且A1B=2AM

∵AM=500m

∴最简路程A1B=AM+BM=2AM=1000m

例3 已知:如图,△ABC是等边三角形,延长BC至D,延长BA到E,使AE=BD,连结CE、DE

求证:CE=DE

证明:延长BD至F,使DF=BC,连结EF

∵AE=BD, △ABC为等边三角形

∴BF=BE, ∠B=

∴△BEF为等边三角形

∴△BEC≌△FED

∴CE=DE

5、课堂小结:

(1)的区别和联系

区别:轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;轴对称涉及两个图形,轴对称图形只对一个图形而言

联系:这两个定义中都涉及一条直线,都沿其折叠而能够重合;二者都具有相对性:即若把轴对称图形沿轴一分为二,则这两个图形就关于原轴成轴对称,反之,把两个成轴对称的图形全二为一,则它就是一个轴对称图形.

(2)解题方法:一是如何画关于某条直线的对称图形(找对称点)

二是关于实际应用问题“求最短路程”.

6、布置作业 :

书面作业 P120#6、8、9

板书设计:

探究活动

两个全等的三角板,可以拼出各种不同的图形,如图已画出其中一个三角形,请你分别补出另一个与其全等的三角形,使每个图形分成不同的轴对称图形(所画三角形可与原三角形有重叠部分)

解:


    轴对称和轴对称图形一文由优秀教案免费提供,本站为公益性网站,此教案为网上收集或网友提供,版权归原作者所有,如果侵犯了您的权益,请及时与我们联系,我们会立即删除!