压缩态研究
- 日期:2009-08-26 09:05
- 来源: 互联网
- 浏览: 次
- 字体:[大 中 小]
根据量子场论,处于真空中,各量子场的每一个振动模式仍会不停地振动,这种振动称为真空零点振荡。与此同时,真空中各量子场间还会相互作用,不断有各种虚粒子产生、消失或转化,这就是真空的量子涨落。从这种意义上看,真空本身就是一种极其复杂的媒质。因此,当用量子场论的观点、方法研究光的传播时,一束具有确定频率、确定偏振态和传播方向的单模光波,其振动的模量与相位角均为互不对易的算符,根据测不准原理,完全相干光条件下的量子相干态,在振幅平面上不再对应于一个点,而是一个圆斑。圆斑的大小等于电场的真空起伏涨落,称为零点振动。这意味着,即使在“完全黑暗”之中,电磁场仍存在微小的起伏。普通光波是经典光波与这种真空起伏的叠加,它们相干的结果构成噪音场,这将使测量的精度从根本上受到限制。如何使这种无规则的起伏压缩至最小,是人们十分关注的问题。近年来,研究人员发现①,在某些情况下,光束中的这种量子噪音可以被压缩到很小,而且,当光波的一部分噪音被压缩至很小时,另一部分光波噪音却被放大,而对被压缩噪音的光波进行测量时,其精确度有可能超出测不准原理给出的限制。为了得到压缩光,最初设想使用一种周期性泵浦的方法。令谐振腔一端的反射镜往返运动,当腔长变化的频率达到光频的两倍时,到达反射镜上的光波能量会周期性地被放大和缩小。
这意味着,腔体靠长度的变化,不断地向光波放出或从光波抽取能量。若反射镜振动相对光波具有一定的相位时,光波则被放大,电磁振荡趋于增强;反之,光波被衰减,电磁振荡趋于减弱。真空噪音是由许多无规则的波构成的,它们具有相同的频率,但振幅与相位却呈现无规则变化。当一定相位的波被放大时,另外一些波则被衰减。能量重新分配的结果,腔内的真空噪音将由一部分高振幅波与一部分低振幅波组成,这两部分波的强弱又交替变化着,这种光波即称为压缩态。上述设想虽然很巧妙,但是事实上,不可能使反射镜以光频数量级振动。1985 年,美国贝尔实验室的斯鲁施尔(Slusher)研究小组以上述原理为基础,提出了一种代替反射镜振动的实验方案。他们在谐振腔中放入一个充满钠原子蒸气的容器。由于在钠原子气中光速比真空中低,光经过钠蒸气室的光程加大。当用激光激发钠原子,由于激光的激发,钠原子蒸气室的光程迅速变化,这种变化的频率又恰好与光频相当,因而代替了反射镜的往返振动。他们的这一实验获得了成功,首次利用所形成的驻波场的激光,周期地激发钠原子而获得了压缩光,使压缩后的真空噪音下降了7%。这一实验的成功带来了积极的反响。
美国IBM的艾尔马丹(Almaden)研究中心的谢尔比(Shelby)、麻省理工学院的夏皮洛(Shapiro,I.)等人利用不同的方法也得到了光场的压缩态。目前世界上最高压缩量的单模压缩态是由得克萨斯大学的基布尔(Kimble,J.)与中国科学院物理研究所的吴令安、山西大学的彭堃墀共同获得的,他们得到的压缩光噪音水平较真空噪音下降了近70%。压缩光是非经典光,它的量子特性对于揭示场的物理本质有着重要的价值。压缩态光场又是通过非线性过程由相干光场产生的,对它的研究又使量子光学与非线性光学得到了交叉。同时,由于压缩光具有比一般标准量子噪音低的起伏,可以大幅度地提高信噪比,可望能在对像引力波这样的微弱信号检测、光通信及原子、分子物理学等方面得到特殊的应用,因此,光压缩态研究已成为目前光学领域中重要的基础研究与前沿课题之一。