高二数学的第二学期,学生将完成所有基础知识内容的学习。对于绝大多数的理科生而言,这个学期的前半学期学习的是选修2-2这本书,所以很自然的,这本书中的重点--导数将会成为这次期中考试的核心知识点。
导数这部分内容对于中学生来说比较抽象,加之新课改更强调数学的工具性,因此很多学生学完导数,对导数的运算法则掌握的比较好--这也是必要的,而对于导数的基本概念、应用中的常见易错点掌握的并不熟练。本文不会面面俱到的讲导数的每种考察方式,而是列举几个学生容易忽略的易错考点,已达到查漏补缺的目的。
在历次期中考试中,学生在导数这部分知识常见的易错点包括:
一、对导数基本概念的理解。
导数的本质是"平均变化率的极限",也就是,而这里
的形式并不重要,只要是是"相同区间"上的"函数值之差"比上"自变量"之差,就是导数。如果能理解清楚这一点,再看题目常出的
、
之类的形式,就感觉比较清晰了。
二、复合函数求导计算错误。
对于复合函数求导的规则,同学大多掌握的不错,但题目中真正出现复合函数的时候,计算还是会出问题。问题出在哪,不在于不会算,而是没有发现这是复合函数。
课标要求学生掌握形如f(ax+b)的复合函数求导规则,这一点已经限制的很死板了。所以当题目中的函数比较符合这个形式的时候,同学大多也是认的出来的,比如这样的函数。反而是内层函数更简单的时候,会被学生忽略,例如
这样的函数。所以同学在求导的时候,一定要刻意观察这一点,识别隐蔽在这里的陷阱。
三、导数与单调区间的关系。
利用导数求函数的的单调区间是导数应用中最基本的题型,按说本不是什么难点。但是这里有一个最大的麻烦,就是导数与函数的单调性不是充要条件。因此,什么时候写
,又在什么时候应该写
是很多同学犯迷糊的地方。
这里需要注意一个要点,我们每一步运算或者推导,得到的条件其实都是原条件的必要非充分条件,想清楚这一点,面对这个问题就清晰了。
如果原题让我们"求"函数的增区间,我们就用增区间的充分非必要条件,也就是来求范围;如果原题给了我们函数增区间的性质,我们就利用增区间的必要非充分条件,也就是
来解题。
推荐内容
教育新鲜事